PLOIDY MEDIATED CHANGES IN STRUCTURAL AND SKELETAL COMPONENTS OF CELL GEOMETRY AT TWO PLOIDY LEVELS IN Chrysopogon zizanioides

Madhavi Singh¹, Seshu Lavania¹, Yerramilli Vimala² and Umesh Chandra Lavania³ ¹Department of Botany, Lucknow University. Lucknow – 226007, ²Department of Botany, C.C.S. University, Meerut – 25000, ³CSIR-National Botanical Research Institute, Lucknow – 226001, India

General perception

- Polyploidy is known to bring-about increase in cell size but reduction in cell number enabling enhancement in organ / tissue size by a factor of 1.5
 Knowledge Gap
- Detailed information on Cell geometry and Histo-morphological organization is lacking

Objective

• To address the above exhaustive analysis is performed on two diverse genotypes at the diploid vs tetraploid level on characterization phenotypic and developmental components.

Material used

Diploids and their corresponding auto-tetraploids of the two diverse

Genotypes

- Genotype Dharani: tall plant type sporting profuse seed set, larger stomata and thick roots,
- Genotype CIM-Vridhi: medium height, very low seed set, smaller stomata and medium root with high oil yield were targeted.

Observations

Expectedly:-

There was increase in over cell size and its associated implications on histo-morphological characters and increase in essential oil concentration in the polyploids.

However:-

There was differential genotypic response for certain features with ploidy elevation

• Variety Dharani : there was increase in tiller number, plant height, inflorescence length, pistil length, area of vascular bundle in the culm and culm thickness, average area of bulliform cell in the leaf, stomatal guard cell, area of stomatal complex, phytolyth size, oil concentration in fresh root, but reduction in average number of nodes in the culm, number of vascular bundles in the culm, stomatal frequency, root vascular bundle and number of primary roots per tiller, • Variety CIM-Vriddhi : Contrary to above there was reduction in tiller number, plant height, inflorescence length, area of culm vascular bundle, more pronounced reduction in stomatal frequency. **Findings suggest that :**

• there is genotype and organ specific response to ploidy change.

• The information provided has value predicting the impact of ploidy change on productivity.

Exomorphology, histo-morphology, micro-morphology and growth-related patterns affected in source diploid and the corresponding autotetraploid of *Chrysopogon zizanioides* (variety Dharani): 92 characters

Characters	Diploid	Tetrapl	%	Characters	Diploid	Tetraploid	% Change
		oid	Change				
Number of tillers (1	$38 \pm$	47 ±	23.68	Average number of nodes	11.5 ±	10.2 ±	-11.30
year)	0.86	1.15		in culm	0.73	0.34	
Number of leaves per	8-10	9-11		Length of internode in the	25.5 ±	23.9 ±	-6.27
tiller				middle region of culm	0.80	0.69	
Plant height (cm)	$170 \pm$	$190 \pm$	11.76	(cm)			
(taken as leaf length)	0.94	0.73		Average Diameter (cm) of	0.51±0.01	0.57±0.00	12.89
Culm length	$230.22 \pm$	$241.1 \pm$	4.78	culm between 2nd and	7/0.447±0	2/0.44±0.	-0.44
(inflorescence and	0.75	0.54		3rd node	.005	00	
culm combined) (cm)				Average number of	149	136	-8.72
Inflorescence length	$60.03 \pm$	51 ±	14.02	vascular bundles in the			
(cm)	0.61	0.29		culm			
Ovary length /	0.2442	0.2736	12.03	Area of the culm cross	3.65	5.98	63.83
breadth (mm ²)				section occupied by the			
Pistil length (mm)	1.98	2.18	10.10	vascular bundles (mm ²)			

Characters	Dipl	Tetr	%	Characters	Dipl	Tetra	%	Characters	Dipl	Tetr	%	Characters	Diplo	Tetra	%
	oid	aplo	Chan		oid	ploi	Chan		oid	aplo	Chan		id	ploid	Chan
		id	ge			d	ge			id	ge				ge
Number of	14	15	7.14	Average size of	1136	1480	30.29	Average area	538.	772.	43.51	Epidermal cell	699.	563.	-
leaf major				leaf midrib	2.5 ±	5 ±		of bulliform	$01 \pm$	$11 \pm$		frequency/	52 ±	64 ±	19.42
vein				vascular	393.	738.		cell (µm ²) in	21.6	42.2		mm ² of leaf	25.4	9.53	
Average	1.1	1.3	18.18	bundle (μm²)	22	28		leaf vertical	1	1		abaxial surface	7		
distance				Leaf	1703	1807	6.10	section				Stomatal	140.	101.	-
between				metaxylem	.04±	.08±		Area occupied	0.36	0.40	10.95	frequency /	91 +	90 +	27.68
major veins				size L X B (μm)	41.5	67.3		by bulliform	5	5		(mm ²) of leaf	5 24	4 76	27.00
(mm)					6	9		cell/cm ² of				middle region	5.24	4.70	
Average leaf	107.	113.	6.06	Total vascular	136.	106.	-	leaf vertical				Stomatal Index	16.7	15 3	-8 81
Area (cm ²)	25	75		bundle in leaf	2 ±	7 ±	21.65	section				(leaf middle	9+	1 +	0.01
Leaf vascular	236.	244.	3.33	vertical	1.86	1.11		Area of	517.	625.	20.89	region	0.42	0.69	
thickness	$6 \pm$	$5 \pm$		section				stomatal	$48 \pm$	$63 \pm$		Leafhase	2 18	0.05	_
(µm)	1.60	3.20		Average	105	79 ±	-	complex (µm ²)	27.4	26.5		stomatal index	2.10	0.00	59 63
Leaf	87.6	96.9	10.54	number of	±	1.12	24.76		6	5		Phytolith size	129	142	10.29
sclerenchyma	$9 \pm$	4 ±		small vascular	1.27			Area of	199.	232.	16.41	(um^2) on leaf	36 +	142. 68 +	10.25
thickness	3.66	2.85		bundle in leaf				stomata (µm²)	8±3.	6±8.		abavial surface	50±	00 <u>⊥</u> 1 / /	
(µm)				vertical					919	96			0.81	14.4 6	
Average	3.37	3.97	17.80	section				Stomatal	101.	117.	16.21	Phytolith	311	21/	-8 76
thickness of	±	± 0.1	13.70	Area of leaf	3971	5141	29.46	Guard cell	$30 \pm$	$73 \pm$		froquonov	544. 72 +	52 +	-8.70
leaf cuticle	0.11/	5/		small vascular	.25 ±	.25 ±		area (µm²)	2.23	2.23		/mm ² of loof	75 <u>+</u> 16 2	0 03 22 -	
adaxial/abaxi	3.72	4.23		bundle in leaf	124.	186.		Size of long	2579	3066	18.89	abavial surface	10.2	9.95	
al surface	±	± 0.1		vertical	5	92		epidermal cell	.19±	$.56 \pm$		Aroa (um ²)	1057	7001	
(μm)	0.15	2		section (um ²)	-			(um ²) on	293.	283.		Area (µrir)	1057	26	-
Number of air	15	17	13.33	Average area of	538.	772.	43.51	abaxial leaf	88	52		occupied by	1.0	.50	25.44
chambers in				bulliform cell	01 ±	11 ±		surface				phytolith /			
leaf vertical				(um ²) in leaf	21.6	42.2						ohoviol eurfoco			
section				vertical section	1	1									

Relative comparison of plant **exo-morphological** of *Chrysopogon zizanioides* (Variety Dharani) in the source diploid (A, C, E) and the corresponding autotetraploid (B, D, F).

Relative comparison of **exomorphological and reproductive features** of *Chrysopogon zizanioides* **(Variety Dharani)** in the source diploid (A, C, E, G, I) and the corresponding auto-tetraploid (B, D, F, H, J).

Relative comparison of histomorphological features of **leaf** of *Chrysopogon zizanioides* (Variety **Dharani**) in the source diploid (A, C, E, G) and the corresponding autotetraploid (B, D, F, H).

Relative comparison of micromorphological features (**Epidermis and Stem)** of *Chrysopogon zizanioides* (Variety Dharani) in the source diploid (A, C, E, G) and the corresponding auto-tetraploid (B, D, F, H).

Relative comparison of **root histomorphological** and micromorphological features of *Chrysopogon zizanioides* (Variety Dharani) in the source diploid (A, C, E, G) and the corresponding autotetraploid (B, D, F, H).

Relative comparison of Chrysopogon zizanioides (CIM-Vriddhi) in source diploid (A, C, E, G) and auto-tetraploid (B, D, F, H). Fresh root (A, B), middle region of mature leaf abaxial and adaxial surface (C, D, E, F), leaf base with hairy ligule (G, H).

Relative comparison of **floral parts** of *Chrysopogon zizanioides* (CIM-Vriddhi) in source diploid (A, C, D) and auto-tetraploid (B, E, F). Morphological and micromorphological **features of single floret and its parts.** Dissected **sessile floret (A, B)**. Sessile floret **anther** (C, F), Sessile **floret pistil** (D, E)

Relative comparison of micromorphological features **in leaf V.S.** of *Chrysopogon zizanioides* (CIM-Vriddhi):in source diploid (A, C, E, G) and autotetraploid (B, D, F, H).

Relative comparison of leaf abaxial surface and leaf micro-morphology of

Chrysopogon zizanioides (CIM-Vriddhi):in source diploid (A, C, E, G) and auto-tetraploid (B, D, F, H). Scanning Electron microgtraphs (C, D) showing **phytolith, stomata, papillae and epidermal cells.**

Relative comparison ofstemmicro-morphologyofChrysopogon zizanioides(CIM-Vriddhi):

in source diploid (A, C, E, G) and auto-tetraploid (B, D, F, H).

Relative comparison of **root micro-morphology** and histomorphology of *Chrysopogon zizanioides* (CIM-Vriddhi) in source diploid (A, C, E) and autotetraploid (B, D, F).

Relative comparison of **root micromorphology** and histo-morphology of *Chrysopogon zizanioides* (CIM-Vriddhi) in source diploid (A, C, E) and auto-tetraploid (B, D, F).

Diploid

Auto-tetraploid

THANK YOU

