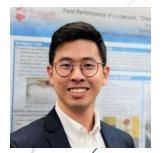
Pollutant Removal Using Vetiver Grass and Generation of Biofuel and Biochar From Spent Biomass:

A Circular Economy Model

7th

Viravid Na Nagara¹, Zhiming Zhang¹, Hadeer Saleh¹, Sameer Neve¹, Rupali Datta², Paul Truong³, Dibyendu Sarkar¹

1 Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, USA



2 Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA

3 Veticon Consulting, Byron Bay, New South Wales, Australia

Pollutant Removal Using Vetiver Grass and Generation of Biofuel and Biochar From Spent Biomass: A Circular Economy Model

Viravid Na Nagara (viravid.n@gmail.com)

Zhiming Zhang (zzhan100@stevens.edu)

(hsaleh2@stevens.edu)

Sameer Neve (sneve@stevens.edu)

Dibyendu Sarkar (dsarkar@stevens.edu)

Rupali Datta (rupdatta@mtu.edu)

Paul Truong (p.truong@veticon.com.au)

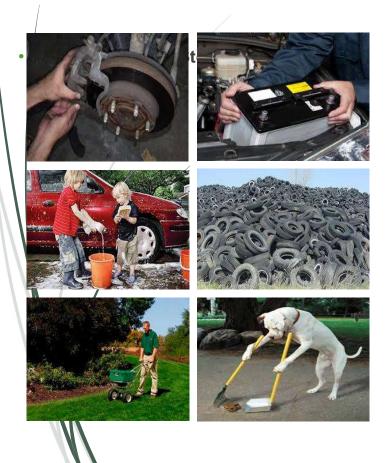
Problems caused by stormwater runoff

Visible threat:

Water ponding and flooding

Invisible threat:

 Stormwater pollution



Source: https://witter.com/jgodynick/status/1044673777341214722
https://patch.com/new-jersey/secaucus/dramatic-photos-secaucus-flooding-tuesday

Problems caused by stormwater runoff

Metals

Nutrients

Total suspended solids

Source: https://sigearth.com/stormwaterrunoff-a-top-cause-of-waterpollution/

Problems caused by stormwater runoff

Invisible threat: Stormwater pollution

Visible threat:

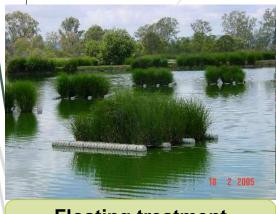
Water ponding and flooding

Invisible threat:

Stormwater pollution

Adverse environmental impacts

- Affecting reproduction rates and life spans of aquatic species
- Disrupting food chains in aquatic systems
- Affecting water supplies
- Eutrophication



Source: https://www.draper.ut.us/1021/Pollution-Information

https://www.slevens.edu/news/how-stevens-helping-save-oceans-and-lakes-trimming-nutrient-runoff

Vetiver (Chrysopogon zizanioides)

Floating treatment platform (FTP)

- High tolerance to harsh climatic conditions
- High biomass
- Massive root system
- Can grow hydroponically
- High capability of nutrient and metal uptake

Parameter		Range of tolerance		
рН		3.3-12.5		
Temperature	Frost	5°F (-15°C)		
Temperature	Heat	140°F (+60°C)		
Drought		15 months		
Altitude		2800 m		

Objective

To develop a low-cost, efficient, "green" retrofit for stormwater retention ponds to enhance their metal and nutrient removal capacity and to use spent vetiver as feedstock for the generation of bioethanol and biochar to form a circular economy model.

Experimental design

Reactor: 150-gallon tanks

Permanent pool volume:

100 gallons

Simulation volume:

33 gallons over 2 hours

Spiked initial concentrations:

50 μg/L Cu

∕200 µg/L Pb

180 μg/L Zn

900 μg/L P

 $5.5 \text{ mg/L NO}_3^{-1}$.

Two non-vegetated FTPs (control)

Two vegetated FTPs (vetiver)

30 mins

60 mins 90 mins

120 mins

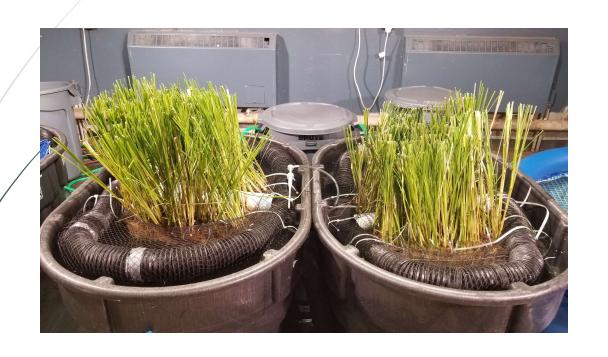
1 day

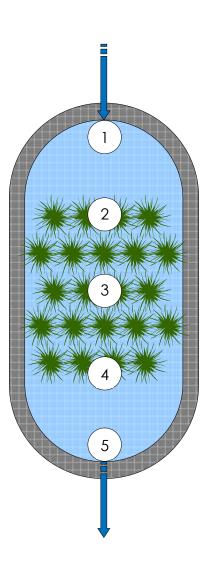
2 days

6 days

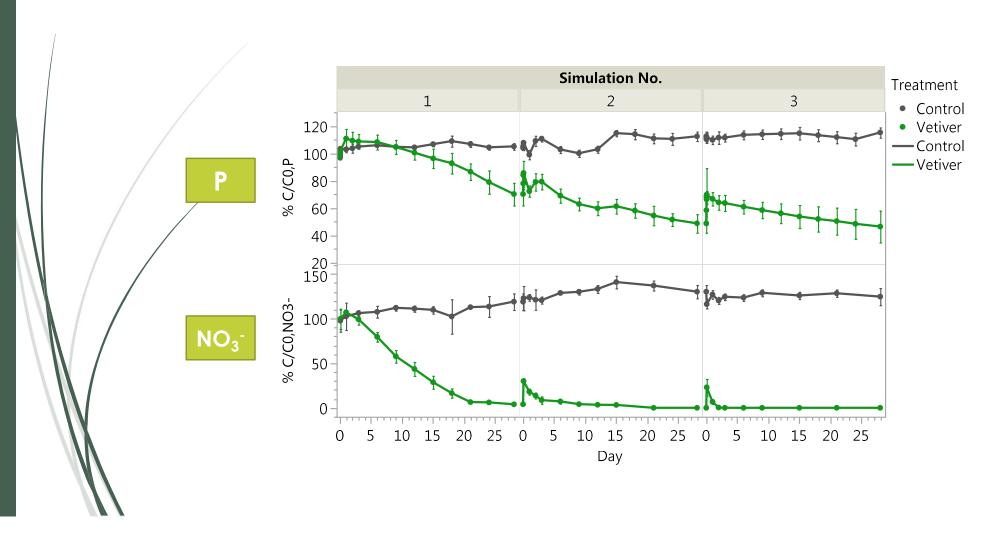
9 days 12 days

18 days

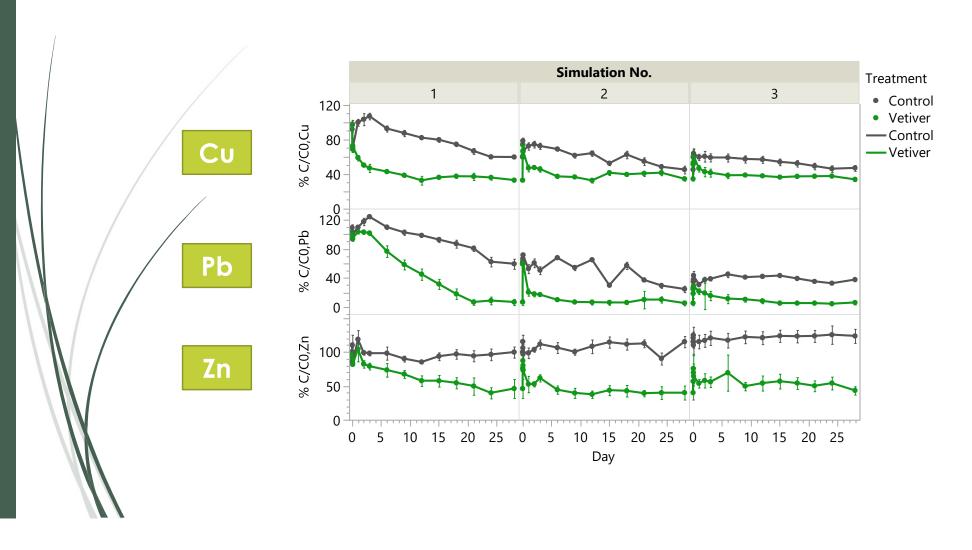

al days

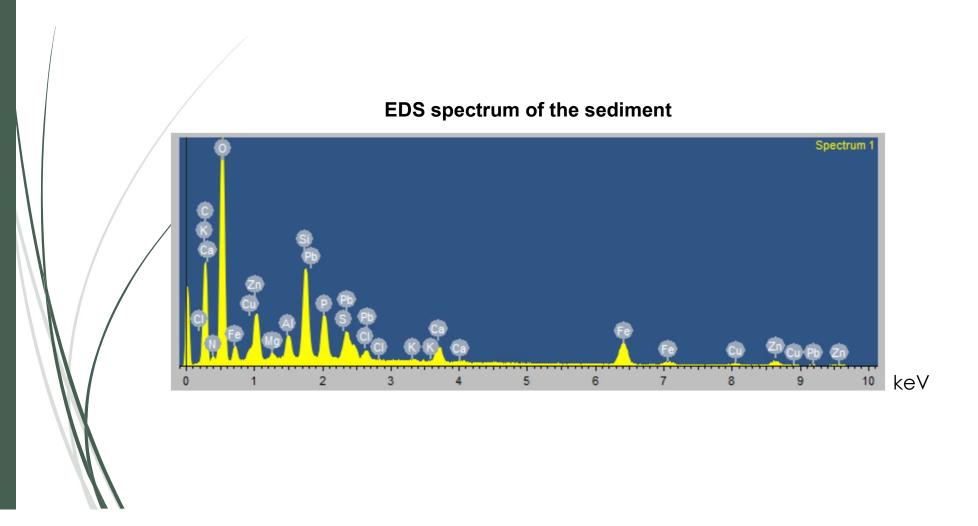

24 days = 28 days

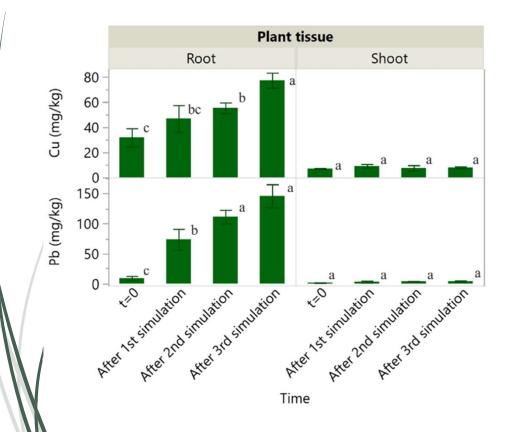
Monitoring period:

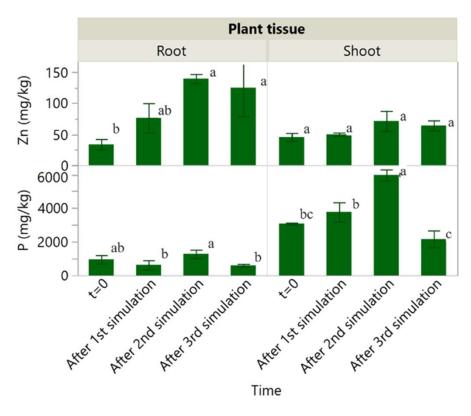

28 days for each simulation, 3 simulations in total

Experimental design



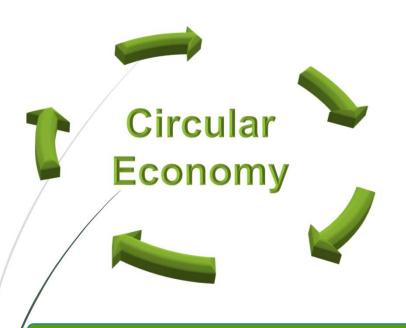

Results – Pollutant Removal


Results – Pollutant Removal



Results – Pollutant Removal

Results – Pollutant Distribution in Vetiver



Results – Plant growth and chlorophyll content

Total Chl

Results – Physicochemical characteristics of vetiver biochar

Biochar production:

The roots of the spent vetiver were washed clean, air dried, and ground before pyrolysis at 500°C held for 60 mins.

Parameter	Value
Yield	51.28%
BET Surface Area	171.6 m²/g
рН	9.78 ± 0.13
Electric Conductivity	184.5 ± 21.3 μS/cm
Ash Content	23.6%
Cation Exchange	98 cmol/kg
Capacity	
Bulk Density	0.57 gm/ml
С	69.87 %
Н	2.824 %
0	1.720 %
N	19.37 %
H/C	0.04
O/C	0.025
N/C	0.28
Liming Value	3.06 % CaCO ₃

Results – Physicochemical characteristics of vetiver bioethanol

Bioethanol production:

The bioethanol was generated from the shoots of the spent vetiver via multiple steps, including

- 1) preparation of biomass,
- 2) dilute acid-alkali pretreatment,
- 3) enzymatic hydrolysis,
- 4) pioethanol fermentation, and
- 5)/distillation.

Parameter	Test method	Value
Cellulose	Yang et al., 2006	32.86 %
Hemicellulose	Yang et al., 2006	34.03 %
Lignin	Yang et al., 2006	14.69 %
Extractives	Yang et al., 2006	9.87 %
Bioethanol Yield	Zabed et al., 2016	16.58 g/L (236.89 mg/g)
Ethanol Content	ASTM D 5501	98.86 %
Density at 25°C	ASTM D 4052	0.77 g/mL
Calorific Value	ASTM D 2014-96	31.36 MJ/kg
Viscosity	ASTM D 88-94	1.02 cSt
Sulfur content	ASTM D 3177-89	0.03 wt %
Water content	ASTM D 95-70	1.01 %
Research Octane Number	ASTM D 2699	107

Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D.H., Liang, D.T., 2006. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy & Fuels 20, 388–393 Zabed, H., Sahu, J.N., Boyce, A.N., Faruq, G., 2016. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew. Sustain. energy Rev. 66, 751–774.

Results – Potential metal residues in biochar and bioethanol

Metal leaching potential from biochar:

- Synthetic precipitation leaching procedure (SPLP) (USEPA, 1994)
- Toxicity characteristic leaching procedure (TCLP) (USEPA, 1992)

	SPLP			TCLP				
	Biochar	Spent Shoot	Spent Root	Regulatory Level ^a	Biochar	Spent Shoot	Spent Root	Regulatory Level ^b
Ag	BDL	BDL	BDL	800	BDL	BDL	BDL	5000
As	BDL	BDL	BDL	3	BDL	BDL	BDL	5000
Ba	297.53	261.15	397.82	120000	422.12	512.78	282.31	100000
Cd	BDL	BDL	BDL	80	BDL	8.25	BDL	1000
Cr	BDL	BDL	BDL	NR °	2.75	4.56	3.02	5000
Pb	2.29	7.56	4.83	100	9.24	17.18	8.31	5000
Hg	BDL	BDL	BDL	40	BDL	BDL	BDL	200
Se	BDL	BDL	BDL	800	BDL	BDL	BDL	1000

BDL: Below detection limit

Metal contents in bioethanol:

No metals were found in bioethanol.

USEPA, 1994. Method 1312: Synthetic precipitation leaching procedure USEPA, 1992. Method 1311: Toxicity characteristic leaching procedure modistion standards using the synthetic precipitation leaching procedure.

NJDEP, 2013. Development of site-specific impact to ground water soil remediation standards using the synthetic precipitation leaching procedure.

^a SPLP criterion: Higher of the health-based leachate criterion or aqueous practical quantitation levels (NJDEP, 2013)

^b TCLP criterion: maximum concentrations of contaminants for the toxic characteristics from Title 40 CFR 261.24 - Toxicity characteristic

^c NR: Not regulated

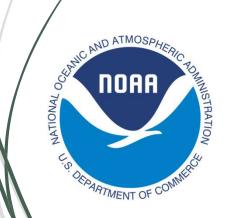
Summary

 Floating treatment platform with vetiver is an effective retrofit for stormwater retention ponds to remove nutrients and metals.

 The majority of P was translocated from the belowground tissues to the above-ground tissues, while the majority of the removed metals (Cu, Pb, and Zn) were localized in the vetiver root.

No visible plant stress symptoms was observed.

 The yield and quality of biochar and bioethanol generated from the spent vetiver biomass were desirable.



Thank you!

Acknowledgement:

This work was supported by United States Environmental Protection Agency/New Jersey Department of Environmental Protection and National Oceanic and Atmospheric Administration/New Jersey Sea Grant Consortium.

We thank Paul Truong for presenting our research in ICV-7.

